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Abstract: Previous work has shown that the permutations describing degenerate isomerizations may be classified according 
to two important criteria: (1) their behavior with respect to reflection symmetry; (2) their self-inverse or non-self-inverse character. 
By analysis of the relationship between these two points of view, it is shown that, for degenerate isomerizations, it is possible 
to predict whether achiral paths of steepest descent and transition states are allowed on the basis of group theoretical properties 
of the permutations describing the molecular symmetry and the considered isomerization. Examples of chemical interest are 
discussed. 

1. Introduction 
The development of mathematical tools relevant to static and 

dynamic stereochemistry was initiated 10 years ago.1"8 In these 
approaches, chemical concepts such as reaction paths, molecular 
configurations, and indistinguishable rearrangements or reactions 
have been related to mathematical objects such as permutations, 
cosets, and double cosets. This theoretical approach provides a 
general scheme based on symmetry and applicable in principle 
to any chemical system. However, as has often been pointed out, 
permutations describe merely the result of a chemical transfor­
mation and do not give direct information about the reaction path 
itself. 

In spite of this restriction, the permutational approach has 
played an important role in dynamic stereochemistry. For instance, 
the interpretation of NMR line shape results concerning nonrigid 
molecules of high symmetry has been improved by the systematic 
use of permutational analysis.9'10 Moreover, it is clear that the 
structure of the groups involved in the description of stereochemical 
transformations is related to important concepts such as stereo­
chemical correspondence11'12 and residual stereoisomerism.1314 

Five years ago, Stanton and Mclver15 derived very elegant group 
theoretical properties of reaction paths. These "selection rules 
for the transition states of chemical reactions" allow information 
to be obtained about the symmetry of transition states (TS) if 
the symmetry of the reactant and the permutation describing the 
reaction are known. Almost simultaneously, Pechukas16 showed 
that the conservation of nuclear symmetry along paths of steepest 
descent (PSD) implies that "a transition state cannot have sym­
metries not shared by the reactants and products of the trans­
formation it mediates" and that for degenerate reactions extra 
symmetries (interchanging reactant and product) of the TS are 
possible. 

More recently, Nourse17 has analyzed self-inverse (SI) vs. 
non-self-inverse (NSI) degenerate isomerizations: only SI de­
generate isomerizations can traverse a transition state with sym­
metries that exchange reactant and product. 

Even if permutations do not tell us how a reaction proceeds, 
this overview shows that many important properties of potential 
surfaces, reaction paths, and transition states are related to group 
theoretical properties. In the present paper, we derive some results 
that are in the same spirit. We first (section 2) discuss the relation 
between two important criteria that have been used to classify 
permutational rearrangements. The first of these criteria, which 
is related to chirality, has been formulated by Ruch2 and Klem-
perer6 and distinguishes between rotation and reflection symmetry 
of steric courses. The second one is the SI or NSI character 
introduced by Nourse.17 We show that these two criteria, although 
apparently independent, are in fact related to each other. By 
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combining them, we show that five different types of permutational 
rearrangements are possible. 

From the permutational properties related to the above two 
criteria, we show that it is possible to predict whether achiral PSD 
and/or TS are allowed for any given permutational or polytopal 
rearrangement. This is done in section 3, where examples of 
chemical interest are discussed. 

2. General Discussion 

The classification theory of2,6 permutational rearrangements 
has led to the definition of sets of permutations describing re­
arrangements that are equivalent to a rearrangement represented 
by a given permutation, x. A mode of rearrangements 

M(x) = (AxA) U (A<TX<rlA) (1) 

is, more precisely, the set of permutations representing rear­
rangements that are indistinguishable from the rearrangement 
represented by x because (a) they generate the same final con­
figuration as x from the same initial one and/or (b) they must 
occur with the same probability as x, because of their symmetry 
equivalence. 

In the above formula, A is the permutational representation 
of the group of proper symmetry operations of the molecule whose 
molecular point group (proper and improper operations) may be 
written 

G = A U Aa (2) 
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Figure 1. Permutations x and axa'1 lead to the same configuration (cr 
= (12)). 
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Figure 2. Permutations x and a-xeT1 lead to different configurations, for 
any a; here <r = (25)(36). 

where a is any improper operation and U means "union". 
The set F(x) = AxA has been defined6 as the set of nondif-

ferentiable permutational isomerizations in a chiral environment. 
In achiral environment, M(x) should be used instead of F(x) (see 
eq 1 and eq 8 below). It is seen that M(x) is the union of two 
such sets that are constructed with x and x = oxa'1 as generators. 
It has been shown2,6 that if x leads from an ordered molecule1 

(OM) O, to Op then x transforms O, into Oy, where O, stands for 
the enantiomeric OM of O1-. If it is possible to describe a given 
reaction path by x, then the mirror image path can be described 
by axa'1, a permutation that is symmetry equivalent to x by an 
improper symmetry operation. 

From a mathematical point of view, only two situations are 
possible: either F(x) and F(x) have a common permutation or 
they do not. In the former case they are identical: 

type I: AxA = AaXa-1A (3) 

and in the latter case their intersection (H) is empty (</>): 

type II: (AxA) (~) (AaXo-1A) = 4> (4) 

When eq 3 is satisfied, it is possible, for any given x, to find 
an improper operation a such that axa'1 leads to the same con­
figuration as x, starting from a fixed given one. When eq 4 is 
satisfied, there exists no such a, i.e., x and axa'1 must lead to 
different configurations. These situations are illustrated in Figures 
1 and 2, respectively, where the permutations act by "right 
multiplication",17 a convention that will be used to describe 
isomerizations whereas "left multiplication"17 will be used (see 
section 3) to compare the symmetries of reactants and products. 

Klemperer has proposed the terms achiral or chiral6 reactions 
on a mathematical basis, i.e., according to whether eq 3 or eq 4 
are respectively satisfied. This is the first criterion. The im­
plications of eq 3 and 4 concerning the chiral or achiral character 
of a PSD and of a TS will be discussed below. 

The second criterion has been introduced more recently by 
Nourse.17 In this formulation, the proper and improper symmetry 
operations are represented in the Hougen group18 

R = A[J AaJ (5) 

where J is the overall inversion about the center of mass. A 
configuration reached by the permutational rearrangement rep­
resented by x is associated to Rx. According to Nourse, the 
permutational rearrangement is SI if and only if Rx contains at 
least either a SI element or a pair of mutually inverse elements. 
Stated in these terms, there is apparently no relation between the 
two criteria (type I achiral vs. type II chiral and SI vs. NSI). 

In fact, we now show that there are three different classes of 
SI rearrangements, each having a different behavior as far as 
chirality of PSD and TS is concerned. 

Indeed the coset Rx may be split into two cosets relative to the 
group A of proper symmetry operations: 

Rx = Ax {J AaJx 

and the SI character of the permutational rearrangment may be 
realized in three distinct ways since the SI element or the pair 
of mutually inverse elements may appear (a) in Ax only, (b) in 

(18) Hougen, J. T. J. Chem. Phys. 1962, 37, 1433. 
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Figure 3. Structure of the extended modes of rearrangements. 

AaJx only, or (c) in both Ax and AaJx. In case a there exists 
at least one y such that y = atx and y'1 = akx (at and ak G A), 
which implies 

Ay = Ay1 (6) 

or equivalently 

AxA = Ax-1A (6') 

In case b there exists at least one z such that z = ataxJ and z"1 

= akaxJ, which implies 

z = ay J 

A(ay) = A(cy)-1 (7) 

Aaxa^A = Ax-1A 

since type J commutes with any permutation and where y is 
defined as in eq 6. From eq 6 and 7 it is clear that in case c eq 
3 is always obeyed (type I). Conversely, when eq 3 is satisfied, 
cases a and b are excluded. Therefore, cases a and b are auto­
matically of type II, and SI rearrangements refer to three distinct 
situations: Ic, Ha, and lib. Since two situations (types I and II) 
are possible for NSI rearrangements, five distinct situations have 
to be considered. These five situations are in direct connection 
to the structure of the extended modes of rearrangements5'19'20 

defined by 

Mnt(x) = (AxA) U (AaXa-1A) U (Ax-1A) U (Aax^a^A) 
(8) 

This is represented in Figure 3, where the dots x, x, x~\ and xT1 

stand respectively for each of the double cosets of eq 8 (x = oxa'1) 
and where a link between two dots means the equality of the 
corresponding double cosets. Hence the four double cosets in eq 
8 may be all distinct, all identical, or pairwise identical. 

3. Chirality or Achirality of the Paths of Steepest Descent 
and the Transition States 

Using previous results16,17 and the classification of Figure 3, 
we can now construct AT, the largest group of proper symmetry 
operations of the TS, and R7, its largest point group. We assume 
as in previous work,16 that the transition state is a simple saddle 
point directly linked to reactants and products by paths of steepest 
descent. It is interesting to find out that different structures of 
AT and R7 result from the five possible situations of Figure 3. 
Indeed, let A denote the group of proper symmetry operations 
common to the starting (S) reactant and final (F) product con­
figurations: 

A = AsnAF = AC\ (X-1Ax) (9) 

where the permutations of A act by "left multiplication".17 A 
similar definition may be adopted for R: 

R= [AC\ (X-1Ax)] U J[(Aa) fl (x^Aax)} (10) 

According to Pechukas16 A (R) is the largest group of proper 
symmetry operations (point group) of any nonstationary config­
uration on the PSD. For rearrangements of type II, there are no 
improper symmetry operations common to S and F. The second 

(19) Brocas, J.; Willem, R.; Fastenakel, D.; Buschen, J. Bull. Soc. Chim. 
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R (PSD) AT (TS) RT (TS) 

NSII 2 u AaJ A 
Ii 2 2 

SI Ic 2 u 2aJ 2 u 2y 
Ha 2 2 u 2y 
lib 2 2 

2 u2oJ 
2 
2 Li 2y L)2oJu2oyJ 
2u2y 
2 u2ayj 

x . (1431(25) 
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figure 4. NSI permutational rearrangement of type I (achiral molecule). 

term of eq 10 is then absent. Hence for SI rearrangements of 
types Ha and Hb and for NSI rearrangements of type II: 

R = A (11) 

whereas for rearrangements of types Ic (SI) and I (NSI): 

R = AiJ MJ (12) 

where a is an improper operation common to S and F, i.e., be­
longing to the second term in eq 10. 

The groups AT and RT are now easily obtained.17_ In case a 
RT = A U Ay, whereas in case bRT = A\JAz = A{J AayJ 
from the relation between y and z (see eq 7). The group A1 is 
easily obtained jrom Rj. For NSI rearrangements AT (and R1) 
coincides with A (and R). In Table I, the structure of the groups 
A1 and Rj are shown for each of the five possible situations of 
Figure 3. This table deserve several comments in view of a 
comparison with previous work. 

(A) For NSI rearrangements, Table I distinguishes between 
type I and type II rearrangements. It should be noted that the 
terms "achiral" and "chiral" have been used by Klemperer6 to 
distinguish steric courses where eq 3 is satisfied from those where 
eq 4 is obeyed. For NSI rearrangements, this terminology applies 
as well to PSD as to simple saddle points (TS). Indeed, when 
eq 3 is obeyed (type I) both PSD and TS appear to be possibly 
achiral in Table I. Both must be chiral when eq 4 is obeyed (type 
II) as shown in this table. We now describe some examples of 
NSI rearrangements. 

An example of type I is shown in Figure 4, where we consider 
an hypothetical C21, pentacoordinate structure. Such a geometry 
has been discussed in a MO study of the role of BH5 in the 
hydrolysis of BH4".21 The mechanism assumed in Figure 4 
consists of a migration of hydrogen 3 from an equatorial position 
on the C2 axis in S toward an equatorial position out of the C2 

axis in F. As a result, hydrogens 1 and 2, which are axial in S, 
become equatorial in F. As shown by the coset Rx describing 
F, this stereochemical change is NSI. The PSD and TS can only 
have symmetry operations common to both S and F, i.e., the plane 
containing B and hydrogens 3-5 expressed by (12)/. Hence the 
PSD and TS could be achiral as shown by Figure 4. Realistic 
NSI rearrangements of type I seem, however, to be rather un­
common. 

In Figure 5 we show a NSI permutational rearrangement of 
type II. This figure consists of an axial view of a tetragonal 
pyramid with four ligands A and one ligand B (the large dot) in 
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Figure 5. NSI rearrangement of type II (achiral molecule). 
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Figure 6. Berry mechanism, a SI rearrangement of type Ic (achiral 
molecule). 
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Figure 7. SI rearrangement of type Ha (achiral molecule). 

basal position, a situation that could occur if B is more electro­
negative than A.22 Since the rearrangement is NSI and since 
there are no improper symmetry operations common to S and F, 
the PSD and TS must be chiral. 

(B) For SI rearrangements, Table I shows that the order of 
R7 is twice the order of R, as shown by Nourse.17 Note, however, 
that the order of A7 is not always twice the order of A. The 
distinction between cases Ha, lib, and Ic provides interesting 
informations about the chirality of SI rearrangements. Case Ic 
is "achiral" according to Klemperer6 since eq 3 is obeyed. In this 
case indeed as shown by Table I both PSD and TS might display 
improper symmetry operations. Cases Ha and Hb are "chiral" 
since eq 4 is obeyed. The PSD must indeed be chiral [R = A for 
these cases). For case Ha the TS must also be chiral (Rj has 

(21) Pepperberg, I. M.; Halgren, T. A.; Lipscomb, W. N. / . Am. Chem. 
Soc. 1976, 98, 3442. 
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1972, 94, 3047. 



2220 / . Am. Chem. Soc, Vol. 105, No. 8, 1983 

Table II. Largest TS Symmetry Groups (Chiral Molecules) 

NSI enantiomerization 
no enantiomerization 

SI enantiomerization 
no enantiomerization 

Af 

2 
2 
2 
2 Li Ay 

Rj-

2 
2 
2 iJ 2y J 
2u2y 

no improper operations), whereas for case lib, achiral TS are 
allowed due to the presence of SI improper elements ayj in R1. 
We now briefly discuss examples of SI rearrangements. 

The Berry mechanism23 is an example of SI rearrangement of 
type Ic. As may be seen on the coset of configuration F in Figure 
6, SI elements appear in both Ax and AaxJ (respectively (1425), 
(1524), (14)(25)/, and (15)(24)./). The C4, TS proposed for this 
mechanism has improper symmetry operations that are (i) com­
mon to both S and F, i.e., (12)/ and (45)/ and are (ii) of SI origin, 
i.e., (14)(25)/ and (15)(24)/. The isomerization of cyclo­
propane24'25 and the inversion of ammonia are other examples of 
type Ic. 

For SI rearrangements of type Ha as for NSI rearrangements 
of type I it seems difficult to find a realistic example. In Figure 
7 we show a hypothetical rearrangement of this type. There are 
no symmetry elements common to S and F. It is also seen that 
the only SI element is (12)(35), which belongs to Ax. Hence for 
the most symmetrical TS compatible with this steric course, one 
has Aj = R1 = {/,(12)(35)}. A mechanism that looks plausible 
(on symmetry basis at least) is proposed in Figure 7. Achiral PSD 
and/or TS are of course excluded. 

It is very easy to find examples of chemical interest for SI 
rearrangements of type lib. For instance, the isomerizations of 
homoprismyl and of heptamethylcyclohexadienyl cations discussed 
by Nourse,17 the Bailar5'26 twist for hexacoordinate complexes (see 
Figure 2), and the internal rotation of ethane16 are of this type. 
In all these cases, the S and F configurations have no common 
improper symmetry operations, which excludes an achiral PSD, 
but an achiral TS is allowed because of the SI character of these 
rearrangements. 

So far, we did consider only achiral molecules. The above 
discussion is, however, easy to apply to chiral molecules. Indeed, 
in such a case R = G = A (see eq 2 and 5) and the distinction 
between type I and II becomes meaningless. Hence, if x is a 
permutation, the coset representing the product is either Ax or 
AxJ. The latter expression refers to the situation where S and 
F are enantiomers (labels not included). For SI transformations, 
a self-inverse element will therefore either be noted y or yj. The 
various possibilities are shown in Table II. It is seen that the 
transformations of chiral molecules proceeding without enan-
tiomerisation cannot traverse achiral transition states (RT = A7). 
Achiral transition states for chiral molecules are only allowed for 
SI enantiomerizations. 

Examples for each of the cases listed in Table II are now given. 
The internal rotation of a chiral ethane derivative discussed 
previously17 is a NSI rearrangement without enantiomerization, 
whereas the classic example of the mesobiphenyl compound27 is 
a NSI enantiomerization when steric hindrance prevents the phenyl 
rings from being coplanar. Achiral TS are excluded for these two 
examples. In the absence of steric hindrance, the enantiomeri­
zation of mesobiphenyl might proceed through an achiral transition 
state (coplanar phenyl rings). It is easy to verify that this steric 
course is SI. The enantiomerization of the 2-brexyl cation17 and 
the internal rotation of hydrazine are both SI enantiomerizations 
of chiral molecules. In Figure 8, the achiral TS has AT = 

(23) Berry, R. S. J. Chem. Phys. 1960, 32, 933. 
(24) Salem, L.; Durup, J.; Bergeron, G.; Cazes, D.; Chapuisat, X.; Kagan, 

H. J. Am. Chem. Soc. 1970, 92, 4472. 
(25) Salem, L. Ace. Chem. Res. 1971, 4, 322. 
(26) Bailar, J. C , Jr. J. Inorg. Nucl. Chem. 1958, 8, 165. 
(27) Mislow, K. "Introduction to Stereochemistry"; W. A. Benjamin: New 

York, 1966; p 93. 
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Figure 8. Internal rotation of hydrazine: a SI enantiomerization. 

i/,(14)(23)) and R1 = (/,(14)(23),(13)(24)/,(12)(34)/}. The im­
proper symmetry operations are due to the SI character of this 
enantiomerisation. Examples of the same type have been discussed 
in detail in previous work.28 The interconversion of the chiral 
structures 1 and V in ref 28 might proceed through the achiral 
TS 2. This is a SI enantiomerization. Note that 3 and 3' in this 
reference have lower symmetry (C1) than that predicted by the 
largest TS symmetry group (C,). Such lower symmetry reaction 
path and TS are of course conceivable for any of the examples 
discussed above. The interconversion of chiral boat conformations 
of 6,6-dimethyl-l,3-dioxacyclooctane is another SI enantiomer­
ization25 (Figure 12 (I) of ref 25). A last example, the Berry 
pseudorotation of a trigonal bipyramid with a chiral equatorial 
ligand, is a SI rearrangement without enantiomerization.17 

Finally, we discuss briefly polytopal6 rearrangements, which 
are characterized by the fact that S and F have different geom­
etries and energies, whereas for degenerate rearrangements S and 
F have by definition identical geometries and energies. Hence, 
as shown previously16 for polytopal rearrangements, the only 
symmetry operations for the PSD and TS are those common to 
S and F. In particular, only polytopal rearrangements of type 
I, i.e., satisfying a relation similar to eq 3, have improper symmetry 
operations common to S and F and might possess achiral PSD 
and traverse achiral TS. 

4. Conclusions 

When using permutations to describe the steric course of a 
rearrangement, one merely compares the initial and final positions 
of the nuclei on a molecular skeleton. In principle, no information 
about the trajectory of these nuclei is available from these per­
mutations. However, if one assumes a movement along a path 
of steepest descent and through a transition state directly con­
necting reactant to product, then the permutations describing the 
rearrangement determine very important symmetry properties of 
the trajectory.16,17 

From previous work, it is known that the permutation describing 
a steric course is involved in two important criteria. The first one 
is related to its behavior with respect to reflection symmetry.1"8 

The second one is the SI or NSI character of the rearrangement.17 

We have shown that these two criteria are interrelated in spite 
of their apparent independence. By combining them, we are led 
to consider five different types of permutational rearrangements. 
For each of these types, we show that it is possible to predict 
whether achiral PSD and TS are allowed on the basis of purely 
permutational properties. 

Of course, the description of a reaction path in terms of PSD 
is not the only possible one.29 It might be interesting to examine 
whether other descriptions could lead to similar informations about 
the symmetry of the reaction path. 

To conclude, we think that this work is another example of the 
physical relevance of the permutational analysis of steric courses 
and reaction paths.30 
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